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Similarity rules for isothermal bubble growth 

By W. E. LANGLOIS 
International Business Machines Corporation, San Jose Research Laboratory, 

San Jose, California 

(Received 17 July 1962 and in revised form 7 September 1962) 

A normalized formulation of the problem of isothermal bubble growth, dominated 
by viscosity and diffusion, reveals that in its full generality the problem involves 
eight dimensionless parameters. Limiting cases for extreme values of each of these 
parameters are investigated. 

1. Introduction 
In a previous paper, Barlow & Langlois (1962) considered the diffusion-fed 

growth of a spherical gas bubble into a Newtonian viscous liquid under isothermal 
conditions. A solute gas diffuses through the liquid according to Pick's law of 
diffusion for a medium in motion 

In this equation, c denotes the gas concentration, D the diffusivity, r the distance 
from the bubble centre, t the time, and u the radial velocity of the liquid. The 
hydrodynamic equation of continuity requires that 

u = R2&lr2, (1.2) 

where R is the instantaneous radius of the bubble and an overdot denotes ordinary 
differentiation with respect to time. 

It is assumed that, at any given time, conditions inside the bubble are homo- 
geneous. The partial pressure ps of solute gas is related to the concentration cg 
according to Boyle's law 

where A is a constant. In  general, there is also a residue pressure prRi/R3, 
arising from gases, assumed insoluble in the liquid, which may be trapped in the 
bubble at an initial partial pressurep,. In  the previous paper, the residue pressure 
was set equal to zero. 

The rate of change of mass of solute gas inside the bubble is equal to the dif- 
fusion rate across the bubble wall, so that 

(1.3) P g  = Ac,, 

d(+nR3~,)/dt = 47~R~D(a~/ar),=,. (1.4) 

Initially, a uniform concentration co of solute gas is dissolved in the liquid, 
so that 

c(r, 0) = lim c(r,  t )  = co. 
r+w 
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Henry’s law is assumed satisfied, so that 

where k is constant. It follows that, initially, 

C , ( O )  = c,/k.  

The previous paper showed that the hydrodynamic equations can be reduced 
to an ordinary differential equation relating the radius of the bubble to the total 
pressure within the bubble. We have 

p(RR + 3 R 2 / 2 )  + 4pRIR + 2alR = Ac,+pTR,/ 3 R3- pa, (1.8) 

in which pa denotes the ambient pressure and p, p, a denote, respectively, the 
density, viscosity, and surface tension of the liquid. In  order to obtain a deter- 
minate problem, the initial radius R, and the initial growth rate R, should be 
specified. 

In  many cases of practical importance, the bubble-growth problem formu- 
lated above can be simplified, for certain of the physical phenomena involved 
may be completely negligible. By way of example, if the inertia of the liquid 
is negligible, equation (1.8) reduces to 

4pR/R+ 2alR = Ac,+pTR;/R3-pa, (1.9) 

and there is no need to specify 12,. 
Whether or not a given phenomenon is negligible can properly be determined 

only when the bubble-growth problem is rewritten, in a meaningful way, in terms 
of dimensionless equations and boundary conditions. Such a dimensionless 
formulation also provides the similarity rules for scaling one bubble-growth prob- 
lem to another. 

Throughout this paper, it  is assumed that the mathematical problem formu- 
lated above provides an adequate model of the physical problem. The limitations 
of the model were discussed in the previous paper. 

2. Physical dimensions of the various parameters and variables 
Let us note, first of all, that in the isothermal bubble-growth problem formu- 

lated in 8 1 the only relevant basic physical dimensions are force F, length L, and 
time T .  Force, rather than mass, is chosen as basic since animportant special case 
is that of negligible inertia. There are two independent variables 

[ t ]  = T ,  [r] = L. (2.1) 

The dependent variables of the problem, together with their dimensions, are 
given by 

[p,] = F P 2 ,  [c,] = FL-4T2, [R] = L, [v] = LT-1, [c] = FL-4T2. ( 2 . 2 )  

The variables and c depend upon both t and r ;  the others depend upon t alone. 
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In  its full generality, the bubble-growth problem involves eleven parameters: 

[R,] = L, [R,] = LT-', [/I] = FL-4T2, [a] = FL-I,; 

[p]  = FL-ZT, [D] = L2T-', [c,] = FLp4T2, 

k,  dimensionless, 

[A] = L2T-2, [pa] = FL-2, [pr] = FL-2. 

The selection of an appropriate length scale is quite straightforward: no matter 
which of the physical phenomena involved is negligible, R, is always an important 
parameter. Therefore, we let 

r = R,h. (2.4) 

However, the meaningful selection of a time scale must be based upon some 
a priori linowledge of which physical effects will be dominant in a given problem. 
Otherwise, the scale chosen might involve as a factor some parameter which, in 
an important limiting case, tends to zero or which, in the limit, is not even rele- 
vant to the problem. When inertia is negligible, neither p nor R, can be used: 
when surface tension is neglected, r drops out of the problem; when the liquid 
can be taken as inviscid, ,u cannot be used; when diffusionis unimportant, thepara- 
meters D, c,, and k drop out automatically, and, furthermore, the problem can be 
reformulated so that A is not relevant; evidently, pa and pr ,  respectively, tend to 
zero in important limiting cases. Thus, there is no selection of a time scale which 
will remain meaningful in all limiting cases. In  order to proceed, therefore, we 
must exclude from consideration, temporarily at least, some limiting cases. 
We shall assume that diffusion is important. Although this choice is somewhat 
arbitrary, it does correspond to the physical conditions assumed in the previous 
paper. A characteristic time of diffusion is the time required for the diffusion 
length (DT)$ to equal the characteristic length scale of the problem. Thus, in 
keeping with our previous selection of R, as the length scale, we let 

t = (Rg/D)7. ( 2 . 5 )  

3. Viscosity-dominated hydrodynamics of growth 
Let us consider first the bubble-growth problem under conditions such that 

the inertia and surface tension of the liquid can be completely neglected. In  the 
next section we shall derive the criteria which determine when this is justified. 

When inertia and surface tension are negligible, the bubble growth is governed 
by the ordinary differential equation 

4pdRldt = (AC,+~,R; /R~-~ , )  R (3.1) 

and the partial differential equation 

subject to the boundary conditions 

(acpr),,, = (1/3DR2) d(R%,)/dt, (3.3) 

lim c(r ,  t )  = c,, 
r+m 

(3.4) 
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to the initial condition 

and to the matching condition 
c(r, 0 )  = co, 

c (R + 0, t )  = kcg(t) .  

We normalize each o f  the dependent variables with respect to its initial value 

R = R o h ,  (3.7) 

c = cog, (3.8) 

c g  = ( C o I ~ ~ ~ g .  (3.9) 

normalized according to 
becomes 

With these normalized dependent variables and with the independent variables 
equations (2.4) and (2 .5 ) ,  the bubble-growth problem 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

in which p ,  is the partial pressure of solute gas initially within the bubble, i.e. 

Po = Acolk, (3.16) 

and the dimensionless parameter B (bubble number) is defined by 

B = po Rg/4pD = Ac0 Ri/4kpD. (3.17) 

We see that, even without accounting for inertia and surface tension, the 
bubble-growth problem involves four dimensionless groupings : the pressure 
ratios pr/po and pa/po, the parameter B, and the Henry’s-law constant k. In  
order for two bubble-growth problems to be dynamically similar, each o f  these 
parameters, calculated for one problem, must have the same numerical value as 
when calculated for the other. 

Let us now investigate the bubble-growth behaviour for extreme values of the 
parameters. The significance of the pressure ratios is clear: when 

PrlPo 4 1, (3.18) 

the residual pressure is negligible compared with the partial pressure of the 
solute gas within the bubble; when 

PAP0 + 1, (3.19) 

the residual pressure dominates, at least during the early stages of growth. 
Ma & Wang (1962) have studied the effect o f  residual pressure on the dynamics of 
bubbles in inviscid liquids. When 

PalPo 1, (3.20) 
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the presence of the ambient pressure can, in effect, be ignored, On the other hand, 
if pulpo approaches or exceeds unity, the bubble growth is severely retarded by 
the ambient pressure. Whenever 

(3.21) 
the bubble shrinks. 

The parameter B is the ratio of R,2/D, the characteristic diffusion time, to 
4p/po, which is a characteristic time of initial growth, viz. it  is the reciprocal of 
the logarithmic growth rate of a bubble under the driving pressurepo, opposed by 
a liquid of viscosity p and negligible surface tension. 

When B is large, the bubble grows rapidly, compared with the typical speed 
a t  which solute gas diffuses toward it. For this case, the bubble-growth problem 
can be studied by using the thin-shellapproximation employed by Plesset & Zwick 
(1954) in their study of thermal diffusion into a vapour bubble and applied to the 
problem of isothermal bubble growth by Barlow & Langlois (1962). In  this 
approximation, the concentration of gas in the liquid is assumed to differ signi- 
ficantly from co only in a thin shell surrounding the bubble. 

PalPo > c g  + (~r /po) /A~,  

On the other hand, when 
B <  1, (3.22) 

the characteristic diffusion time is short compared with 4p/po. The concentration 
just outside the bubble never differs appreciably from co and, consequently, the 
partial pressure of solute gas in the bubble remains approximately equal to po. 
The bubble growth is then determined by the differential equation 

(4pl~)dRldt  = po-pa+prR;/R3, (3.23) 

subject to the initial condition 

Thus, 
R(O) = 22,. (3.24) 

RIRO = {exp [~(PO-PJ  t/4PI +Pv(exP [ ~ ( P o - P ~ )  t/4PI - 1)/(PO-$’a)}’* (3.25) 

The Henry’s law constant k provides a measure of the solubility of the solute 
gas in the liquid. If k is zero, the gas is completely insoluble. Thus, the limiting 
case of k approaching zero with co remaining finite is physically unrealistic, as 
evidenced by the breakdown of the normalization (3.9). However, it is meaningful 
to investigate the asymptotic behaviour of the bubble-growth equations when 
k and co both approach zero in such a way that co/k, the initial concentration of 
gas in the bubble, remains finite. In  this limiting case, the hydrodynamic prob- 
lem of growth and the diffusion problem become uncoupled. The boundary con- 

(3.26) dition (3.12) reduces to d(A3C,)/dr = 0. 

Since, initially, C, and A are both unity, integration of (3.26) yields 

C, = 1/A3. (3.27) 

Jntegration of equation (3.10), subject to the initial condition 

then yields 
A(0) = 1, (3.28) 

(3.29) A = ([Po+Pr+ (Pa-PO--jpr)ex~ (-3BPa7/~o)I/~u}f* 
8-2 
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The diffusion problem can, in principle, now be solved separately: equation 
(3.11), with A given by equation (3.29), is integrated subject to the initial con- 
dition (3.14) and to the boundary conditions 

lim C ( ~ , T )  = 1, c ( A + o 7 ~ )  = Pa/[Po+pp+ (pa-pO-pr)exp ( - 3 B ~ a ~ l ~ o ) l .  
A+ao 

(3.30) 

When k is infinite, the vapour pressure of the solute gas is zero. Thus, if c,, 
remains finite as k tends to infinity, the partial pressure of solute gas in the bubble 
tends to zero. Equation (3.1) then becomes 

4 , ~  dR/dt = pr R:/R2 -pa R7 

R/Ro = {[pr  + (Pa -Pr)  ~ X P (  - ~ P ~ ~ I ~ P ) I I P ~ I ' -  

(3.31) 

(3.32) 
so that 

Since no solute gas enters the bubble, 

( ac /W r=R = 0, (3.33) 

so that solution of the diffusion equation (3.2) subject to the boundary condition 
(3.4) and to the initial condition (3.5) yields 

c(r7t)  = co, (3.34) 

i.e., the gas concentration remains homogeneous. 
The limiting case of k and co both approaching infinity in such a way that their 

ratio approaches a finite limit is somewhat similar to the limiting case of B 
approaching zero. As k approaches infinity, the boundary condition (3.12) 
approaches 

Hence, integration of (3.11) subject to (3.13) and (3.14) yields 

(3.35) (aclah) A=* = 0. 

C(h,T)  = 1. (3.36) 

The matching condition (3.1 5) then gives 

C*W = 1, (3.37) 

so that, as in the case of B approaching zero, the partial pressure of solute gas 
in the bubble remains at po. The bubble radius as a fiinction of time is once more 
given by equation (3.25). 

4. The effects of inertia and surface tension 
When it cannot be guaranteed a priori that the inertia and surface tension 

of the liquid are negligible, the terms corresponding to these effects must be 
retained in the hydrodynamic equation (1.8). In  terms of the normalized vari- 
ables, defined by equations (2.4), (2.5), (3.7) and (3.9), equation (1.8) becomes 
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This result would seem to indicate that inertia can be neglected in comparison 
with viscosity if and only if 

and that surface tension can be neglected in comparison with viscosity if and 
only if 

However, the quantities dR/dr and d2R/dr2 are not necessarily of order unity. 
The dimensionless time T was defined, according to equation (2.5), by normalizing 
with respect to a characteristic time of diffusion, not with respect to a character- 
istic time of hydrodynamic growth. As we saw in $3, for extreme values of the 
parameter B these characteristic times are quite different. Thus, the criteria 
(4.2) and (4.3) are necessary and (with certain reservations to be discussed pre- 
sently) sufficient for the neglect respectively, of inertia and surface tension only 
for moderate values of B. 

For extreme values of B, it is necessary to specify a velocity v and an accelera- 
tion a which characterize the growth of the bubble. If this can be done, surface 
tension is negligible compared with viscosity only if 

pD/4p 4 1, (4.2) 

c~R,/2pD < 1. (4.3) 

CT/2pv < 1. (4.4) 

There is a critical initial radius associated with surface tension. If the inertia 
terms in equation (1.8) are neglected, the growth rate of the bubble is zero when 

Ro = Rcrit  = 2gl(po + ~ p - ~ a ) ,  (4.5) 

and when R, is smaller than Rcrit the bubble shrinks. When R is nearly equal to 
Rcrit, the characteristic growth velocity v is quite small, so that the obvious 
importance of surface tension in this case is reflected in the breakdown of the 
criterion (4.4). When (4.4) is satisfied, we normally expect that surface tension is 
negligible, However, this conclusion is not unequivocally assured, for it is 
always conceivable that a small term in a differential equation might, un- 
expectedly, produce a large effect. However, except for this reservation, which 
is always present in order of magnitude analyses, the criterion (4.4) is necessary 
and sufficient for the neglect of surface tension compared with viscosity. 

Inertia is negligible compared with viscosity only if the criteria 

and 

are both satisfied. The criterion (4.6) could easily have been anticipated, for 
3pR0v/8p is a Reynolds number. For the reason outlined in our discussion of 
the importance of surface tension, the criteria (4.6) and (4.7) are not quite sufficient 
to justify the neglect of inertia. In  the case of inertia, there is available an evident 
example of their insufficiency. When it is known apriori that inertia is negligible, 
the initial growth rate is not specified. Instead, it is calculated by neglecting the 
inertia terms in equation (1.8) : 

vo = ( d R / d t ) t = ,  inertia neglected = (PO + P ~ - P ~ - ~ V / R O )  (Ro/4p).  (4.8) 

However, when inertia may be important, I?, must be specified-and the speci- 
fied value may be quite different from v,, as defined by equation (4.8). If this 
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is the case, the inertia of the liquid will be important in the first few instants 
of growth, even if the conditions (4.6) and (4.7) are satisfied. Thus, inertia pro- 
duces noticeable transient effects unless 

l ~ ~ o - ~ o ~ / ~ o l  @ 1. (4.9) 

In summary, we have found that the isothermal bubble-growth problem is 

(1) pT/po, which measures the importance of the residual pressure of insoluble 

( 2 )  pa/po, which measures the importance of the ambient pressure; 
(3) B = Ac, Rg/4k,uD, which determines the relative magnitudes of the charac- 

( 4 )  k the Henry’s law constant, which determines the degree of coupling be- 

( 5 )  cr/2,uw, which measures the relative importance of surface tension and 

(6) 3pR0v/8,u, the Reynolds number, which measures the importance of the 

(7) pRia/4pv, which measures the importance of the inertia associated with 

(8) 1 (Ao - vo)/vol, which measures the transient effects of inertia. 

characterized by 8 dimensionless parameters : 

gases; 

teristic rates of gas diffusion and hydrodynamic growth; 

tween the diffusion problem and the hydrodynamic problem; 

viscosity ; 

inertia associated with the instantaneous rate of growth; 

the accelerated rate of growth; 
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On the stable shape of subliming bodies in a 
high-enthalpy gas stream 

By PETER G. SIMPKINS 
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(Received 29 May 1962 and in revised form 3 September 1962) 

This paper describes a series of experiments carried out in a high-enthalpy 
stream of argon on materials that are known to sublime. The results confirm 
that an axisymmetric Teflon model ablates to a stable shape which is independent 
of the initial nose profile. The effect of changing the total enthalpy of the gas is 
simply to alter the recession rate of the nose. The experimental results show poor 
agreement with a simple theory which ignores the effects of mass transfer in the 
boundary layer. 

1. Introduction 
I n  the design of an ablation shield, consideration must be given to the change 

of shape of the shield during the re-entry phase. Since large changes in the profile 
will alter the aerodynamic characteristics of the vehicle, an effort must be made 
either to predict the change of shape or, better, to employ a nose profile that 
maintains its initial shape and recedes at a constant rate, namely the ablation 
velocity, V,. 

The problem of the equilibrium shape of any ablating material may be sub- 
divided into: (a )  when the stagnation temperature is approximately the same as 
the melting temperature of the body material; ( 6 )  when the stagnation tempera- 
ture is much greater than the body melting (or sublimation) temperature. In  
the first case, melting occurs only in the stagnation region so that the nose of the 
body becomes more and more blunt until the heat-transfer rate is nearly uniform 
across the face. Examples of such behaviour have been given by Bogdonoff 
(1957), who describes a number of tests on ice models in a hypersonic stream of 
Mach number 13, stagnation pressure 1001b. per square inch and a stagnation 
temperature of 294 OK. When the stagnation temperature is much greater than 
the body melting or vaporization temperature, experiments have indicated that 
after steady-state conditions are reached an equilibrium profile is attained which 
recedes at a constant rate. The explanation for this behaviour is that if the melt- 
ing rate exceeds the equilibrium value, the temperature gradient at the surface 
is increased and more heat is conducted into the body, thus less heat is available 
for the melting process and the melt rate decreases. Conversely, if the melt rate 
falls below the equilibrium value the reverse procedure occurs. 

McLellan (1955) described a series of experiments in which the melting of 
hemispherically -ended cylinders and cones was studied. The Woods-metal models 
were placed in an air stream at Mach number 6.9 with a stagnation temperature 


